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Motivation:  Structural uncertainty 
•  Species interactions are difficult to quantify and highly context 

specific 
•  Ecosystem models can be extremely sensitive to model 

structure 
 
 
 
Is there some way to avoid these problems? 

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service | Page 2 

Time-delay embedding 
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Takens’ Delay Embedding Theorem 

Almost any system can be re-written in 
terms of lags. 

i.e. 
xt = f(xt-1, xt-2,…,xt-d) 

 Can use more than one time series if you have it 



Methods to date 
•  Forecasting in many disciplines 
•  Identify dynamic coupling from time series 
•  Quantify context-dependent interactions 
•  Always better at forecasting than using the wrong parametric model, 

sometimes better than fitting the right one! 
•  Correct for model mis-specification  
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Current developments 
•  Hierarchical modeling of short time series 
•  Methods for non-stationary systems 
•  Developing leading indicators of regime shifts  

-  for general bifurcations and unstable systems 

•  Harvest policy from forecasts 
•  Test in laboratory mesocosms 
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Management from forecasts:  
Empirical dynamic programming 

1. Forecast population size in terms of previous size and catch (yield) 

tdttdttt yyxxfx ε+= −−− ),...,,,...,( 1
population size  catch 

3.    Compare long-run yield to single-species policy and 
optimal policy for 5 different 2d scenarios 

A B

catch 

E qE 

2.  Find harvest policy that maximizes long-run  
 discounted average reward using stochastic dynamic 
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Yield ratio: 
 
100 years total yield:  
EDP policy 
 
 
100 year total yield: 
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(from training data) 

Overall performance (in 32,400 simulations) 

Median:  
         93%       59% 



Process variance 

Exploitation history 

Yield ratio:  Long run yield for GP / optimal long run yield 
 
 
 

Multi-objective programming: Pareto front 
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Five gallon mesocosms 
Constant or variable temperature 
Seeded with:  

 Rotifers (Brachionus plicatilis) 
- mature in 2-3 days, live 10-30 days 

 Artemia (Artemia salina) 
 - 15 life stages, mature in 2-6 weeks, live 2-6 months 

Open to invasion:  
 by ciliates, nematodes, other rotifers, bacteria 

Three management regimes-  
Single-species model, EDP, and unmanaged controls 

 

Mesocosm Experiments 

Rotifer-Artemia 
 ‘Ecosystem’  
management 
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Mesocosm time series 
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Rotifer and Artemia management 



Strengths 
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Challenges 
Scaling up to many species, space  
 
 
 
 
 
 
 
 

Future Directions 
 
 
 

Integrate prior information 
Convince someone to try this in the field 
 
 
 
 
 
 
 

Approach is generic – should work whenever data are sufficient 
Always better than the wrong parametric model 
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Questions? 



Slides for anticipated questions below 
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EDP produces near-optimal yield 



‘Index’  =  C * (1-1/E) 
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Two standards:    
1.  Constant harvest policy based on perfect information 

Unrealistic ideal 
2.  Policy based on Ricker model fit to same time series 

Close to what is done in ‘data-limited’ fisheries 



Avoiding collapse 

Simulation model 
has ‘tipping point’’   
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Imperfect ‘selectivity’ 

What happens if we also harvest fish from the 
other location (or the other species) ?  
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Everything else stays 
same- 

 
still only know total 
catch and nominal 
effort 
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                      Hierarchical modeling 
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Density dependent maturation 
Two locations with migration (2x) 
Competition  
Host-Parasitoid 
Delayed density dependence (2x) 
Maternal Effects 
Time-varying population growth 
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ρ = 0.87 



Results 
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Let f drift slowly through time to implicitly 
 account for changing environments 

tdttttt xxxfx ε+= −−− ),...,,( 21

Allow f to change each step in  
an arbitrary way  
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